

eMerge performance scripting

Version 1.33 – 24th August 2010

Ian Willcock

ian@willcock.org

Contents

Introduction Page i

Language overview Page 1

Events Page 6

 Commands Page 11

 Keyword Listing Page 16

Introduction

The eMerge system is a networked system that tracks performance events in
real-time and is then able to issue commands to performers based upon a rule-
set which has been created before the performance.

The eMerge scripting language, which controls the decision making and cue-
issuing process, is based on simple text-based definitions of rules, events and
commands. These are written by the user(s) in everyday language, and are
then interpreted by the system. When you enter a rule or a command, the
system checks that what you have entered contains the information it needs. It
then either stores the information if it part of performance preparation, or it
carries out the requested action(s) if it is a command for immediate execution.

Emerge Scripting Language : Language Overview
Version 1.33 : Page 1

Language Overview
The eMerge system
The eMerge system connects live performers and other system-level sensors to
a central server. The system has two main modes – a pre-performance,
preparation state and an active, performance state.

In the preparation state, the system configuration is defined and checked and
the rule structures that will determine how the performance will unfold are
entered and edited. In performance, the server stores information about what is
happening and continually compares what has happened against a stored set
of circumstantial directives – e.g. if such and such an event occurs, carry out
this action.

Scripting language syntax
The basic structure of the eMerge scripting language is the Rule. These are
entered before a performance and are stored in the system. They define what
the system should do during a performance when a particular set of events
occur. Rules can be active or inactive – so that responses to sets of events can
change as a performance progresses.

When the triggering events occur for a rule, its command(s) are executed and
the triggering events are cleared from the system’s memory (so that the rule
does not rigger again straight away). The rule itself however remains active
unless it specifically makes itself inactive through one of its commands.

The other type of input is a Command. When a command is entered on its own
(as opposed to when it is a part of a rule – see below), the system will carry out
the requested action immediately. Commands can be entered at any time -
while the system is in preparation mode or during a live performance.

Commands can cause a wide variety of actions to be carried out, these include
causing information to be sent to one or more performers, or changes to the
internal storage and operation of the emerge system itself.

Rules
Rules determine how the system operates when it is running a performance. A
rule has two parts: events and commands. If an event happens during a
performance, the command will be issued: -

If

ian says “boo”

Then

say “go” to tom

Emerge Scripting Language : Language Overview
Version 1.33 : Page 2

Rules can be triggered by any one of a number of events happening, and can
carry out more than one command: -

If

Ian says “boo”
Jane says “boo”
tom says “boo”
sonja says “boo”

Then

say “go” to sven
show “start playing section four” to craig

Here, if any one of the named says (types) “boo” then the commands will be
issued.

The events needed to trigger a rule can be also combined using ‘and’: -

If

jane says “boo”

and

Section three is active

Then

say “go” to sven
show “start playing section four” to craig
start section four

Emerge Scripting Language : Language Overview
Version 1.33 : Page 3

Events
An event specification has three parts; a reference to a performer or other
system object, a description of something they might do – their state - and the
test for the event to be judged as having happened

Here are some events: -

Object reference test What

nick

says

“stop”

rule SysName_RULE_2

is

active

performance time

is more than

10 minutes

zone view1 x

Is less than

3.5

The reference part of an event must be a word or phrase that refers to
something the system knows about and holds information about (see the
detailed section on referring for more information).

Things the system knows about include:

performers zones

rules sections

the performance

There are four tests that may be applied to judge if the event has happened.
The user can use different words and symbols to specify them. Here are just
some ways of writing the four tests: -

equals

does not
equal

is higher
than

is lower
than

is

isn’t

is more than

is less than

=

≠

>

<

Emerge Scripting Language : Language Overview
Version 1.33 : Page 4

Commands
Commands make the system do something. They may be triggered by events
happening or they may be entered directly by a user at any time – even when
the system is not running a performance.

Commands have two or three parts; an action to be carried out, a reference to a
performer or other system object which is the target for that action and, where
required, a description of what is to be done or sent to that target.

Here are some commands: -

Action Object reference What

start

performance

say (to)

Hannah

“start singing”

set

rule 3

INACTIVE

The reference part of a command must follow the same rules as for events – it
must be a word or phrase that refers to something the system knows about and
holds information about.

The action definitions that can be used depend partly on what the system and
its components (performers, editors, sensors etc.) can do. Some of the words
that will always be understood by the system are: -

say

set

show

play

give a

start

stop

delete

get

make

Emerge Scripting Language : Language Overview
Version 1.33 : Page 5

Referring to Things or Objects
When a rule or command is entered into the eMerge system, the user has to
provide enough information for the system to be able to identify exactly which
information should be examined or sent – depending whether the reference
occurs in a rule or a command.

The system works this out by examining the object reference you provide and
(particularly for events) the test you specify. If a word is not one of the built-in
system words, it is assumed to bee the name of an object. For rules, sections,
and zones you need to specify its type: -

 zone left_space
 section introduction
 rule SysName_RULE_21

For performers, you just need to use the name they are logged in as: -

 jane
 ian

Object names cannot contain spaces or punctuation marks.

Describing States or Values
There are four different ways of describing what value should be tested or sent
to a system component.

generalised
descriptions

ANYTHING, NOTHING, EMPTY,
ACTIVE, INACTIVE

absolute
descriptions

“hello”, 125, “F# 3”, 2 minutes

references to
data

image “symbol1”, sound “low buzz”,
midi “riff”, movie “gesture 7”

references to
objects

zone upstage, rule
SysName_RULE_21, performance
time

Emerge Scripting Language : Events
Page 6

Events
The eMerge system is able to keep track of, and respond to, a large number of
different sorts of events. When specifying events in rules, there are often
additional pieces of information about the events that can be included in rule
definitions. The nature of an event is specified in rules by a combination of the
choice of ‘action’ word and information type. Events may be associated with a
particular performer – or with a system-level input device such as a pressure
pad or ambient light level sensor.

Identifying event sources
Performers and the system-level objects (zones, sections and rules) are
identified by name.

The ANYONE and NOONE keywords are also allowed.

Examples

 (if) Jane gives a mouse signal

 (if) ANYONE gives a mouse signal

System objects are referred to by name.

Examples

 (if) performance time is more than 5 minutes

 (if) section coda time is 2 minutes

 (if) rule SysName_RULE_3 is ACTIVE

 (if) zone myZone x-position is 2.0

After the source identification, an event definition must contain information
about what sort of input and what value that input might have to be considered
meaningful. The types of input that are currently implemented include; signals
(of various types), text and midi.

Emerge Scripting Language : Events
Page 7

Signals
Signal events are simple cues generated by the user or device interfacing with a
client. They could include such things as mouse clicks, a key being pressed on
the computer, a sudden significant change in sound level (such as a performer
saying “bah”) or a sensor sending a message about location etc.. Each signal is
sent to the system together with information about what sort of event it is. This
additional information can be used or not as a situation demands.

Examples
The general form, which will trigger on any signal event is: -

 (if) Dean gives a signal

To specify the type of input, use a type keyword in front of signal: -

 (if) Dean gives a mouse signal

To specify additional things, add keywords (see below for which words can be
used with each input type): -

 (if) Dean gives a double mouse signal

mouse signal

e.g. Dean gives a mouse signal
This type of signal is generated in response to a mouse click. It has 3 possible
additional properties, short, long and double.
short a ‘normal’ quick mouse click.

e.g. Dean gives a short mouse signal

long A click where the mouse button is held down for more than half a
second before being released.

e.g. Dean gives a long mouse signal

double A fast double click

e.g. Dean gives a double mouse signal

sound signal

e.g. Claire gives a sound signal
This type of signal is generated in response to a sudden sound pulse often
through a performer’s headset. It has 3 possible additional properties, short,
long and double.
short a short sound, for example “ki”.

Emerge Scripting Language : Events
Page 8

e.g. Claire gives a short sound signal
long A sound in which a high level is maintained for more than half a

second, for example “shar”.

e.g. Claire gives a long sound signal

double A double sound impulse, where the second sound starts within a
third of a second of the first, for example, “di ka”.

e.g. Claire gives a double sound signal

key signal

e.g. ethan gives a key signal
This type of signal is generated when the performer presses and releases a
single key on their computer’s keyboard. It has 3 possible additional properties,
short and long together with the letter value of the key being pressed.
short a ‘normal’ quick key press.

e.g. ethan gives a short key signal

long A key press where the key is held down for more than half a
second before being released.

e.g. ethan gives a long key signal

Letter
value

The letter value of the key – for character keys, this is the
character that would appear on screen if only that key were
pressed, the letter is placed in speech marks. For control keys the
following keyword can be used: - RETURN. SPACE is also
allowed instead of “ “.

e.g. ethan gives a “z” key signal
 ethan gives a RETURN key signal

Text events
Performance events involving text can, in principle, be of two types; typed or
spoken (only the former is currently implemented). They are distinguished
through the use of different keywords; types and says. Both types of event need
the information to be matched to be specified either using a string of characters
enclosed in speech marks or through a keyword. At the present time, both are
synonymous in event descriptions.

Allowable keywords are; NOTHING and ANYTHING.

Examples

 (if) susan types “welcome”

 (if) ali types ANYTHING

Emerge Scripting Language : Events
Page 9

If speech to text is implemented, the following can be used

 (if) kate says “hello”

 (if) mike says NOTHING

types

e.g. Molly types “I wandered lonely as a cloud”
This type of event gives access to text input. The event is sent when the
performer presses the RETURN key.

Note that the performer client cannot support both typed text input and key and
mouse signals at the same time.

MIDI
Performance events involving MIDI can be collected by the performer client in 2
different ways – as individual events or completed notes. These collection
settings are set in the performer client.

Events generates a midi signal each time certain sorts of midi events are
received by the client. They are described in event specifications by the
keywords gives a, see below for details.

Notes generates a separate performance event for each note that is played (i.e.
one event for each noteOn-noteOff pair) and are described in event
specifications using the plays keyword.

The following 2 collection strategies may be implemented in future versions: -
Phrases generates a a list of notes played whenever the player pauses for more
than 2 seconds and no notes are being held.

Statements are similar to phrases but they are generated (as a performance
event which includes a list of notes played) whenever the player presses a
particular key (usually the top or bottom note on a keyboard).

MIDI note events are specified using the plays keyword together with a short
piece of text identifying the pitch to be matched. Notes are specified by letter
name (in upper case) and the modifiers ‘#’ for sharp and ‘b’ for flat. There
should then be a space and a number indicating which octave is wanted. The
whole note specification should be contained in speech marks. The keywords
NOTHING and ANYTHING are allowed.

Examples

 (if) sophie plays “A 4”

Emerge Scripting Language : Events
Page 10

 (if) ian plays “F# 2”

 (if) frank plays ANYTHING

plays

e.g. rashid plays “C 4”
This type of event gives access to high level midi input. When the event is sent
depends upon the performer client settings. It will be when one of the following
conditions is met: -

 Note - when a noteOn-noteOff pair is completed

Individual MIDI events are captured as signals

midi signal

e.g. yolanda gives a midi signal
This type of signal gives event-level access to midi input devices. It generates a
lot of data and midi input will generally be better gathered using higher level
MIDI events (see above). It has 2 possible additional properties, eventType and
note.
eventType The type of MIDI event that generated the signal. Possible types

are noteOn, noteOff, controlChange, programChange and
pitchBend.

e.g. yolanda gives a noteOn midi signal

note A short piece of text which identifies the note (if any) that is
associated with the MIDI event. Middle C is identified as “C 3”.
Notes are specified by letter name (in upper case) and the
modifiers ‘#’ for sharp and ‘b’ for flat. There should then be a space
and a number indicating which octave is wanted. The whole note
specification should be contained in speech marks.

e.g yolanda gives a “G# 5” midi signal
 yolanda gives a “Bb 0” midi signal

Note that the above examples will trigger on both the starts and
ends of midi notes. To get a single notification for each note that is
played, use the dedicated MIDI event type (see play above).

Emerge Scripting Language : Events
Page 11

System events
The system is able to generate events arising from the performance, time based
performance divisions called sections, representation of physical locations
called zones and the state of rules.

performance

e.g. performance is active
Performances have 2 qualities that can be used in specifying events; activity
and elapsed time.

When a performance is started, it is set to active and its clock starts counting
the seconds since the start performance command was issued. To create an
event which is fired at a particular point in a performance, test for the number of
seconds: -

 performance time is 120

or minutes: -

 performance time is 2 minutes

‘more than’ and ‘less than’ are also allowed: -

 performance time > 45
 performance time is more than 5 minutes

 performance time < 360
 performance time is less than 6 minutes

zone

e.g. zone zone1 is populated
Zones are ways that physical locations can be dynamically represented by the
system. They have 2 qualities; whether they are populated or empty and a 3
dimensional position.

Zones are identified by a name:-

 zone myzone

You can use sense data to update their properties (see commands section) and
then make rules which fire when a zone is ‘in’ a particular location:-

 zone myzone position is (1.5,2.0,0.0)

Emerge Scripting Language : Events
Page 12

or when the zone is populated: -

 zone myzone is populated

or when one of the zone’s position co-ordinates is equal to, less than or more
than a specific value: -

 zone myzone x is 5.0
 zone myzone y is less than 1.3
 zone myzone z > 10.5

section

e.g. section interlude1 is active
Sections are ways that time-based divisions of the performance can be
dynamically represented by the system. They have 2 qualities; whether they are
active or inactive and an elapsed time.

Sections are identified by a name:-

 section intro

Sections are created when a new section name is encountered by the system,
but they are not started (set to active and their clock reset to 0 and started)
unless the start command is used: -

 start section intro

Sections are stopped by the stop command: -

 stop section intro

When a section is started, its activity can be used to fire events in rules: -

 (if) section intro is active

Its elapsed time, counted in seconds, can also be used in rules (until a section
is started, it remains at 0):-

 (if) section intro time > 4 minutes
 (if) section main time is less than 20

Emerge Scripting Language : Events
Page 13

Commands
Commands cause the system to do something. They can be issued by the user
or triggered by a rule if its triggering circumstances arise. All commands require
a target reference (e.g. performer 2, rule 7), although this is implicit in a small
number of cases (see entry for ‘get’ below) and a data value. The particular
action triggered by a command is often dependent on both the keyword used
and the data type supplied.

The ordering of elements in a command usually follows one of 2 syntactical
models, as far as possible following that of ‘natural’ English usage for each
keyword. In all cases, the command keyword must be the first item.

Examples

 set zone upstage to populated (keyword-target-data)

 say “hello” to kevin (keyword-data-target)

Commands can be divided into 2 main categories based on the type of action
they cause to happen; cuing and data management commands.

Cuing commands
These cause messages or orders to be sent to performer clients, usually
accompanying one or more pieces of data and requesting the client to display it
to the performer in an appropriate manner.

Examples

 say “hello” to daniel (speaks)

 play “D# 4” to daniel (plays a tone)

 show “start section 7” to daniel (displays text)

 show image score1.gif to daniel (displays image)

Data management commands
These direct the system to carry out actions on its own internal data
representation. This could cause a change in the system operation, for example
starting and stopping performances, or they might alter the database of stored
rules.

Examples

 start section intro

Emerge Scripting Language : Events
Page 14

 set rule 2 to INACTIVE

 set zone camera1 position to (1.2,2.0,0.0)

Identifying targets
Performers and rules are identified by name. If the first word of a target is not a
keyword, it is assumed to be the name of a performer or rule.

The EVERYONE keyword is also allowed for cuing commands (those whose
target is a ‘performer’).

Examples

 say “hello” to joseph

 show image image1.jpg to EVERYONE

Cuing Commands

say

e.g. say “hello” to michelle

say data to target

The say command sends a text string to a performer client and asks it to speak
it to the performer. The text to be spoken should be enclosed by speech marks.

The character sequences .txt and .html are not allowed in text strings as they
are used to distinguish strings from filepaths (future performance clients will
offer the capability to read from text files).

If the performer client does not have speech capability, the text will be displayed
on screen instead.

Emerge Scripting Language : Events
Page 15

show

e.g. show “hello” to monica

show data to target

The show command sends a text string or an image to a performer client and
asks it to display it on the computer’s monitor.

Note that the current version of the performer client cannot display both text and
images at the same time. However other modes of feedback (speech, MIDI etc.)
do not affect the visual display.

When a performer client displays a new text or image item, it displaces
whatever was previously being displayed.

Displaying text from a file is not yet implemented.

text For text, the data expression may be either an absolute

expression or a file reference (only the former is currently
implemented). For absolute expressions, speech marks should
enclose the text.

e.g. show “start playing now” to Jane

 show polemic.txt to Tony

The character sequences .txt and .html are not allowed in
absolute expressions as they are used to distinguish strings
from filepaths. File names may not include spaces.

For files, the text should be formatted as plain text or as (simple)
html.

images For images, only a file reference is allowed which must be
preceded by the keyword image. File names may not include
spaces. Images should be stored in jpeg or gif format.

If the image is larger than the display area (950 wide, 600 or
485 high depending on the keyboard input mode) will be scaled
to the display area’s size. The proportions of the image are
preserved

e.g. show image xmas_card.jpg to EVERYONE

The image will first be downloaded to the performer client’s
computer – which may cause a delay if files are large and
networks are slow. However, the client caches all downloaded
assets locally so that they are available instantly for subsequent
use.

Emerge Scripting Language : Events
Page 16

Emerge Scripting Language : Events
Page 17

play

e.g. play “C# 6” to Django

play data to target

The play command sends a text string identifying a MIDI note or a file reference
to a performer client and asks the client to play the file through the appropriate
playback system. The file may be either a MIDI file or a sound file – the type is
indicated using the midi or sound keywords. File playback is not yet
implemented.

Note that playing back a sound file may interfere with spoken feedback.

When a performer client receives a request to play a new piece of sound or
MIDI information, it interrupts any playback that is already taking place.

There is currently no way to set instruments for MIDI playback using rules,
although this can be done manually in the performance client.

Playback is currently restricted to a single MIDI channel – which is selectable in
the performance client.

Only MIDI note playback is currently implemented.

MIDI note Notes are specified by letter name (in upper case) and the

optional modifiers ‘#’ for sharp and ‘b’ for flat. There should then
be a space and a number indicating which octave is wanted.
The whole note specification should be contained in speech
marks.

e.g. play “Bb 4” to Jane

MIDI file For MIDI files, a file reference, must be preceded by the
keyword midi. File names may not include spaces.

e.g. play midi fanfare1.mid to performer 5

e.g. play midi 10.0.1.1/midi/fragment6.mid to performer 5

sound file For sound files, a file reference, must be preceded by the
keyword sound. File names may not include spaces.

Permissible sound file formats are .aif, .wav and .mp3

e.g. play sound stretched.aif to performer 5

Emerge Scripting Language : Events
Page 18

Data and system management commands

get

e.g. get me rule SysName_RULE_14

get me rule rule_name
get me rule-list

The get command causes a data object in the system to be retrieved and
returned to the target (which has to be me, the requesting client at present)

rule For rules, the events and commands making up a rule are

returned in an XML format. At present, a rule’s state and labels
are not returned.

rule-list Returns an XML listing of all current rule’s (unique) system
names. These are in the form of SysName_RULE_n, where n is
an ID number

set

e.g. set rule 2 to INACTIVE
 set zone origin position to (2.5, 2.5, 5.0)

set target to data

The set command causes a data object in the system to be loaded with a new
value. There are a number of allowable targets each of which affects the
permissible values for data; performance, rule, section (not implemented).

rule For rules, data can have two values, ACTIVE and INACTIVE. If

a rule is active, its conditions are considered by the system
when it judges if any significant events have taken place.

e.g. set rule 2 to ACTIVE

A rule can make itself inactive as one of its commands –
meaning that it will only be triggered once.

section For sections, data must be a text string.

e.g. set section “transition 2” to active

Assigning section a new name (even to the same name) causes
the system to reset the section time. Section can thus be used
in event definitions to make commands conditional on stages of
a performance. Progress through a section is then given by
section time.

e.g. (if) section time > 1 minute

performance A performance can be either ACTIVE or INACTIVE. When the
system starts, all performances are set to inactive with a

Emerge Scripting Language : Events
Page 19

performance time of 0.

Setting performance to active can also be done using the start
command (see below).

e.g. set performance to active

If a performance is active, its performance time will be
continually increased. When it is stopped (by setting it to
inactive), the performance time is reset to zero.

zone A zone can be set to both a position and to ‘populated’ or
‘empty’. Zones are referred to by name.

e.g. set zone upstage to populated
 set zone avater1 position to (0.0, 3.1)

If the zone name has not been previously encountered by the
system in the project you are working in, it is created.

Positions can be 2 dimensional or 3 dimensional and are
specified 2 or 3 numbers within parentheses, separated by
commas:-

e.g. (3.2,1.0,-2.3)

start

e.g. start section introduction

start performance
start section name

The start command is a synonym for set formalUnit to active (see set section
above)

It can be used with performance or section, when a name for the section ust be
supplied.

When the command is executed, the performance or section clock is started
and is updated until the section or performance is stopped, reset or set to
inactive.
performance For the performance, no further information is needed.

e.g. start performance

The performance is always set to stopped (or inactive) when it is
created or loaded from the database.

section For sections, if the section has already been involved in the
performance as either an event source or as the target of a
command, it is set to active and its internal elapsed time clock is

Emerge Scripting Language : Events
Page 20

started.

If it has not been involved in the performance, it is created and
its clock started.

e.g. start section introduction

Sections are not saved by the system – they are created as
needed during a performance (this process should be
transparent to the user – if you mention a section and it does
not already exist, it will be created)

stop

e.g. stop section introduction

stop performance
stop section name

The stop command is a synonym for set formalUnit to inactive (see set section
above)

It can be used with performance or section, when a name for the section must
be supplied.

When the command is executed, the performance or section clock is stopped
and set to 0.0.
performance For the performance, no further information is needed.

e.g. stop performance

The performance is always set to stopped (or inactive) when it is
created or loaded from the database.

section For sections, if the section has already been involved in the
performance as either an event source or as the target of a
command, it is set to inactive and its internal elapsed time clock
is stopped and set to 0.0.

If it has not been involved in the performance, it is created.

e.g. stop section introduction

Sections are not deleted by stop so that their activity may still be
used in event descriptions

e.g. (if) section introduction is inactive

However, note that there is currently no way to test if a section
has ever been active.

Emerge Scripting Language : Events
Page 21

Emerge Scripting Language : Events
Page 22

Keyword listing
ACTIVE
ANYONE
ANYTHING
controlChange
delete
double
event
EVERYONE
get
give a
gives a
image
INACTIVE
is
is more than
is less than
key
long
make
midi
minutes
mouse
movie
NOONE
noteOff
noteOn
NOTHING
osc
Performer
performance
performance time
pitchBend
plays
position
programChange
RETURN
rule
rule-list
says
seconds
section
section time
short
show
signal
sound
SPACE
time

Emerge Scripting Language : Events
Page 23

to
trigger
types
x
x-position
y
y-position
z
z-position

